
SMART POINTERS IN C++ 1

Smart Pointers in C++
Lukas A. Schwoebel

Abstract—Pointers in C++ are lightweight and efficient, but
due to their limited capabilities they come with some problems.
It is easy possible that something goes wrong when copying
resources or deleting resources that are pointed to by regular
pointers. Smart pointers in C++ belong to a concept that tries
to face these issues, while still simulating the behaviour of
simple pointers and making it easy to exchange them without
much effort. This paper discusses smart pointers, introducing
their aspects and behaviour and outlining common errors while
implementing them as well as problems that might occur.

I. INTRODUCTION

Normal pointers in C++ and C are simple, yet efficient.
The problem is, that resource handling is difficult and it takes
a lot of effort to keep the memory consistent. Even a simple
problem like deleting a resource can load to an inconsistent
state, if the pointer was copied – how to determine if a resource
was deleted already, how does a pointer even being aware that
the resource it points to is also pointed to by other pointers?

Letting the user manage the pointers and the memory
resources that are pointed to means freedom for the program-
mers but also leads to the danger of misuse – most smart
pointer implementation perform useful tasks that prevent most
misuses, like sophisticated memory management, locks at the
resources like semaphores, automatically freeing of resources
that are not used any more. The applications therefore do not
need to observe and careful manage the lifetime of the objects
they point to.

Yet, smart pointers are not a free lunch, as they come with
some drawbacks. There are different type of smart pointers
and it highly depends on the specific use case which type is
the best.

In this paper we will first look at the common foundations of
smart pointers including a simple implementation in Section II,
then we examine different ownership management strategies in
Section III. Section IV covers the problems with smart pointers
concerning standard conversions. In Section V a short glance
is taken concerning existing smart pointer implementations
and the standard pointers. We will discuss the advantages and
disadvantages of smart pointers among with common mistakes
and misuses, most importantly problems with conversions.
Section VII will briefly introduce accessors that are somehow
related to smart pointers, yet differ in syntax and behaviour.
Finally we take a look at the smart pointer concept compared
to other approaches from other programming languages, first
and foremost the memory management in Objective C(?).

II. SMART POINTER FOUNDATIONS

What is a smart pointer in general? In short terms, a smart
pointer is a class object that manages a specific resource and
tries to emulate the behaviour of native raw pointers [2], [8].

In this context we consider a raw pointer a pointer that is
directly supported by the compiler1. In general the object to
which a pointer points to, be it a raw or smart pointer, is called
pointee.

The goal with smart pointers is to have all the functionality
of regular raw pointers and additional logic that can vary for
the specific purpose. Some examples could be:

• garbage collection,
• reference counting,
• measuring of code,
• ownership management,
• or others
In order to emulate the behaviour of raw pointers the

indirection operators * and -> are overloaded, so they can
be used with normal pointer syntax. It is possible to initialise
smart pointers with raw pointers and they offer various types
of conversions. Most importantly and interesting for program-
mers are implicit type conversions, hence conversions that are
done automatically by the compiler. With raw pointers this
behaviour is part of the standard but smart pointers lack this
behaviour.

Table I lists a set of implicit conversions that can be
performed with smart pointers implicitly and are interesting
to be implemented by a smart pointer class. Not all of these
can or should be provided, though, which will be discussed in
section VI.

TABLE I
SUMMARY OF IMPLICIT TYPE CONVERSIONS [2]

From To Comment
T T& object to reference

T& T reference to object
T[] T* array to pointer

T(args) T(*)(args) function to pointer
T const T type to const type
T volatile T type to volatile type

T* const T* pointer to pointer to const
T* volatile T* pointer to pointer to

volatile
0 T* NULL to pointer

Derived* Base* if base is accessible and
derived isn’t const or
volatile

Derived& Base& if base is accessible and
derived isn’t const or
volatile

T[] T* array to pointer to first el-
ement

T* void* if T is not const or volatile

In the following a non-complete example implementation
in C++ is provided for a smart pointer that encapsulates the

1Even though the auto_ptr is now part of the standard, it’s obviously not
meant as a raw pointer in this context



2 SMART POINTERS IN C++

behaviour of a raw pointer by overloading the default syntax
[1]

1 template <class T>
2 class SmartPtr
3 {
4 public:
5 explicit SmartPtr(T* pointee) :

pointee_(pointee);
6

7 SmartPtr& operator=(SmartPtr& other)
8 {
9 ...

10 return *this;
11 }
12

13 ~SmartPtr();
14

15 T& operator*() const
16 {
17 ...
18 return *pointee_;
19 }
20

21 T* operator->() const
22 {
23 ...
24 return pointee_;
25 }
26

27 private:
28 T* pointee_;
29 ...
30 };

So this smart pointer is a templated class, it aggregates a
pointer to a object of the generic type T in its member variable
pointee_ and offers in this version four methods:

• operator= is the encapsulation of an assignment op-
erator, so another smart pointer can be assigned to this
one like
SmartPointer<Widget> sp(new Widget);
sp = new Widget;

• ~SmartPtr() is the destructor operator, in this case it
is not defined.

• operator* returns a direct reference to the encapsu-
lated pointee object

• operator-> returns the pointee object itself

With smart pointers, three (potentially) distinct types need
to be distinguished [1]:

• The storage type, which is the type of the object that is
pointed to, hence the type of pointee_

• The pointer type, thus the type of the object that is
returned by operator->. This does not necessarily need
to be equal to the storage type, it could be just a proxy
object that is returned.

• The reference type, thus the type returned by operator*

III. OWNERSHIP MANAGEMENT

A big issue with smart pointers is the topic of Ownership
Management. As smart pointers "own" the objects to which
they point to, they are responsible for them. Most importantly
they are responsible for deleting them and freeing resources,
once it is time. The time of deletion is important here, because
this varies, depending on the clients2 intention. As tracking the
pointee means tracking overhead, it depends on the application
which type of ownership management should be applied, to
prevent unnecessary tracking operations. In the following the
five most common types are presented:

A. Deep Copy [1]

This is the simplest strategy of ownership management:
Whenever the smart pointer is copied, the pointee object is
copied, too. Therefore there always exists distinct versions that
are completely independent. As this strategy is so simple, it
does not really make sense to use rather than raw pointers
- in normal cases it produces only overhead without any
added value to standard C++ semantics3. There is a use case
where it makes sense, though: Deep Copy enables support for
polymorphism. If a pointer points to an object that is derived
from a base class, during the copy-procedure only the base
part would be copied which is called slicing. A solution is to
implement a virtual Clone method in all derived classes like
this:

1 class AbstractBase
2 {
3 ...
4 virtual Base* Clone() = 0;
5 };
6

7 class Concrete : public AbstractBase
8 {
9 ...

10 virtual Base* Clone()
11 {
12 return new Concrete(*this);
13 }
14 };

The smart pointer calls the Clone() method every time a
object needs to be copied.

B. Copy on Write [1]

The Copy on Write strategy is more resource-efficient than
Deep Copy. Rather than create a copy of an object every time
it is accessed, in this strategy the object is shared by several
pointers until an attempt is made to modify it, then it is finally
copied (using a deep copy for polymorphism support). The
problem is, that a smart pointer is too low level to be able to
differentiate between two function calls.

Given the following example of a class which is contained
in a smart pointer:

2Hence the class/object that uses the smart pointer to access the pointee
3beside a use case like performance/code measuring



SMART POINTERS IN C++ 3

1 class Bar {
2 public:
3 int FunctionNonConst();
4 int FunctionConst() const;
5 }
6 ...
7 SmartPtr<Bar> sp;
8 ...
9 sp->FunctionNonConst();

10 sp->FunctionConst();

The operator-> cannot distinguish between the both
function calls, if they are const or not. Therefore, smart
pointers are not the best place to implement this strategy but
rather full-qualified classes.

C. Reference Counting [1]

The Reference Counting strategy is for objects that are
pointed to by several smart pointers in order to determine
the right moment to delete the object. There is a counter that
contains the number of smart pointers that are maintaining the
object. When a new smart pointer wants to use the object, the
counter is increased, and when a smart pointer doesn’t need the
object any more, the counter is decreased. Once the last smart
pointer doesn’t need the object any more and the reference
counter goes to zero, the object can safely be deleted. That is,
of course, only if no raw pointers are used at the same time,
because they have no influence to the reference counter.

[1] presents three different ways to maintain the reference
counter. Figure 1 shows the first way, saving the reference
counter on the heap. Here, every smart pointer needs to
pointers, one to the object (pointee) and one pointer to the
heap where the reference counter is saved. The drawback with
this method is, that it doubles the size of each pointer because
two pointers are needed.

Another way is shown in Figure 2, instead of having all
smart pointers pointing to the heap, all pointers point to
one intermediate pointer object that maintains a pointer to
the pointee and the reference pointer as class variable. This,
however, reduces the access speed as for every access to the
pointee another level of indirection needs to be surpassed.

This problem could be solved with a structure like in Figure
3, the reference counter is saved in the pointee itself. This is
an efficient way to implement reference counting, but this also
means, that the pointee class needs to be designed to use the
smart pointer. Instances of classes that do not support this way
of reference counting, cannot be used with this method.

D. Reference Linking [1]

Instead of counting the number of "users" for objects, it
would be more efficient and reliable to keep track of the
moment the number goes down to zero, only. Therefore, every
smart pointers keeps a double linked list to its next and
previous element with a wraparound at both ends. This way, a
smart pointer can efficiently be removed or added to the list.
Once a smart pointer wants to remove itself from the list and

Fig. 1. Method 1: Save the reference counter on the heap [1]

Fig. 2. Method 2: Save the reference counter at an intermediate pointer-object
[1]

finds that it is its own predecessor and successor, the object
can safely be deleted. Of course there are three pointers needed
for this strategy instead of only one, as can be seen in Figure
4.

Reference linking is more reliable and does not need any
space on the heap, however the smart pointers are bigger due
to two extra pointers for the list, also adding and removing
objects from the list is more time-consuming than just incre-
menting or decrementing an integer.

A disadvantage of both strategies is the lack of cyclic
management detection. An object A with a smart pointer to
B which itself holds a smart pointer to A would lead to a
cyclic reference. Even though no object uses neither of A and
B they use each other and therefore would not be deleted.

E. Destructive Copy [1]

This is a rather simple strategy that is also used by the
standard smart pointer std::auto_ptr4. Once a smart
pointer is copied, the original is destroyed, or rather set to
0.

4As discussed in Section V this is one of four standard pointers at the
moment, even though auto_ptr is set deprecated (C++11)



4 SMART POINTERS IN C++

Fig. 3. Method 3: Save the reference counter at the pointee itself [1]

Fig. 4. Reference linking, keep all smart pointers in a doubled linked list
[1]

Using this type of ownership strategy, for example by
applying the standard smart pointer auto_ptr can lead to
negative effects for the program data and correctness if not
carefully used. For instance, a method that uses a smart pointer
by value would destroy the original smart pointer:

1 int FuncByValue(SmartPtr<T> sp);
2 ...
3 auto_ptr<FooBar> ap(new FooBar);
4 FuncByValue(ap);

By calling the method in this example, the value of ap would
be 0 after the method returns, because a copy was created
for the method call. As smart pointers with Destructive Copy
strategies do not support value semantics, they cannot or rather
should not be used in containers [10, Item 21], [5, Item 28],
such as vectors or maps – which seems like a big drawback.

However, this strategy has some advantages, too:
• Almost no overhead
• when used as return value for functions, it is made

sure that the pointee object is destroyed when the caller
doesn’t use it

• As it is one of the very few smart pointer implementation
that the standard provides, programmers are forced to get
used to its behaviour

IV. STANDARD CONVERSIONS

V. COMMON IMPLEMENTATIONS AND STANDARD

As briefly described in Section III-E already, there are cur-
rently only three smart pointer implementations in the standard
C++11, the std::unique_ptr, std::shared_ptr, and
std::weak_ptr. The so called auto_ptr was the first
and for a long time the only smart pointer in the C++ standard,
but in the last years it was set to deprecated and replaced with
std::unique_ptr [6, p. 1233].

In the following all common implementations from the
Boost library [3, Part 1] of smart pointers are described, at
first the three smart pointers in the C++11 standard.

A. auto_ptr and unique_ptr (in std::)
In specific situations the auto_ptr can be very useful [5, Item

10], [9] while on the other hand using it with containers like
vector or map can be dangerous [10, Item 21], [5, Item 28].

As described the auto_ptr applies the Destructive Copy
from Section III-E ownership strategy which leads to leaving
right-hand smart pointers empty on copying or assigning two
auto_ptr instances. Therefore the copy semantics is wrong [7]
which lead to the thought to replace it. Due to backwards
compatibility reasons as the copy and assignment operators of
auto_ptr are already defined, in C++11 a new smart pointer
was introduced: unique_ptr.

A unique_ptr solves the problem of misuse by explic-
itly deleting the copy and assignment operators, instead the
std::move() operation has to be called which then copies
the smart pointer destructively.

B. shared_ptr (in std::)
shared_ptr implements the ownership management strat-

egy Reference Counting from Section III-C. Different from
auto_ptr or unique_ptr it can be used in containers, but just
like auto_ptr [11] it also can make use of sources and sinks [9].
In other words: An ownership can also be "passed", when a
shared_ptr source does not need the object any more it "frees"
it by decrementing the reference counter - the sink however
wants to retain the object and increments it in turn.

C. weak_ptr (in std::)
This smart pointer is often listed together with shared_ptr

because it is used in conjunction with shared_ptr only. Once
an object is pointed to by a shared_ptr, a weak_ptr can point
to it, too. In general, the weak_ptr is much like a raw pointer,
is does not "own" the object but only points to it - once
the last shared_ptr goes out of scope, it deletes the object,
regardless if and how many weak_ptrs are still pointing to it.
The difference to a raw pointer however is, that the shared_ptr
sets all weak_ptrs to null [11] - while a raw pointer still would
point to a invalid location in the memory. Using a weak_ptr
therefore prevents from having a dangling pointer.



SMART POINTERS IN C++ 5

D. shared_array

This is the same as shared_ptr, but it owns an array instead
of a single object. But different from shared_ptr, it is not part
of the standard.

E. scoped_ptr and scoped_array

These two types of smart pointers try to be the behaviour
that auto_ptr might be to have been developed for [11]: To
automatically delete the object once it goes out of scope. It
was designed to make sure dynamically allocated objects are
properly deleted and has similar characteristics to auto_ptr.
The main difference is, scoped_ptr cannot be moved, copied,
or assigned. Therefore it is a pointer to an object with the
single purpose to delete the object after it is not used any
more. scoped_array is the same again, just for arrays.

F. intrusive_ptr

This smart pointer is like shared_ptr applying the Reference
Counter strategy. But instead of applying the method depicted
in Figure 1 with holding the actual reference counter on the
heap, the reference counter variable is part of the pointee
object, as shown in Figure 3. As mentioned before, this
requires the class that is to be managed to support intrusive
reference counting.

VI. PROBLEMS (IMPLICIT CONVERSION ET AL.)

• pointer leakage, accessors solve this problem
• implicit conversions with smart pointers:

– user-defined conversions can’t be implicitly chained
together – no indirect base conversion

– ambigious calls if indirect conversions are user-
defined (hierarchy C –> B –> A, conversion in C
for B and A)

– try to support preference to convert to direct base
over a indirect base

– supporting const
– support for multiple inheritance

VII. OAUTH ACCESSORS

Accessors in OAUTH are described to be an alternative to
smart pointers - the main difference is that while smart pointers
overload the operators and ideally the object maintained by
a smart pointer can be accessed as if it was just a smart
pointer, accessors duplicate all public member methods of
the application class. Listing VII [2] shows an example of
an accessor implementation and usage:

1 // application class
2 // target of the accessor
3 class Targetclass {
4 public:
5 int foo;
6 Targetclass(int init) : foo(init) { }
7 void set(int foobar) { foo = foobar; }
8 int get() { return foo; }
9 ...

10 };
11

12 // accessor for Targetclass
13 class TargetclassA {
14 private:
15 Targetclass * ptr;
16 public:
17 TargetclassA() : ptr(0) { }
18

19 void make(int init) {
20 ptr = new Targetclass(i);
21 }
22 void set(int i) {
23 ptr->set(i);
24 }
25 int get() {
26 return ptr->get();
27 }
28 ...
29 };
30

31 TargetclassA tca = new TargetclassA;
32 tca::make(5);
33 tca::set(4);
34 int foovar = 5;
35 foovar = tca::get(); // foovar set to 4

So from the users point of view an accessor does the same
as an smart pointer, but instead of using − > to access the
pointee functionality, :: is used. From the technical point of
view, an accessor are much more complex and more difficult to
declare, because every member function needs to be wrapped
by an accessor class. Therefore it is hard to template accessors
and reuse them with other classes.

The big advantage of accessors compared to smart pointers
is the fact, that with accessors the pointee is not leaked as
described in the previous section. It is not possible to directly
manipulate the pointee, therefore accessors are more safe and
reliable.

VIII. ONGOING RESEARCH AND OTHER LANGUAGES

A. Objective C [4, Chapter 17]

• In Objective C smart pointers are part of the language,
every variable is pointed to by a smart pointer using the
reference counting strategy to automatically releasing it.

• Autorelease pool concept
- What about Java?

IX. SUMMARY AND OUTLOOK

REFERENCES

[1] Andrei Alexandrescu. Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley Professional, 2001. II, II,
III-A, III-B, III-C, III-D, 1, 2, III-E, 3, 4

[2] Daniel R. Edelson. Smart Pointers: They’re Smart, but They’re Not
Pointers. Proceedings of the 1992 Usenix C++ Conference, 1992. II, I,
VII

[3] Bjoern Karlsson. Beyond the C++ Standard Library: An Introduction
to Boost. Addision Wesley Professional, 2005. V



6 SMART POINTERS IN C++

[4] Steven G. Kochan. Programming in Objective C 2.0. Addision-Wesley,
2009. VIII-A

[5] Scott Meyers. More Effective C++. Addison-Wesley, 1996. III-E, V-A
[6] open std.org. Working Draft, Standard for Programming Language C++

N3092, Accessed on 28 May 2012. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2010/n3126.pdf, 2010. V

[7] Software Engineering Institute CERT. Don’t use auto_ptr where
copy semantics might be expected, Accessed on 28 May 2012.
https://www.securecoding.cert.org/confluence/pages/viewpage.action?
pageId=28180606, 2011. V-A

[8] Bjarne Stroustrup. The C++ Programming Language, second edition.
Addision-Wesley, 1991. II

[9] Herb Sutter. Using auto_ptr Effectively. C/C++ Users Journal, 1999.
V-A, V-B

[10] Herb Sutter. More Exceptional C++. Addison-Wesley, 2002. III-E, V-A
[11] Herb Sutter. The New C++: Smart(er) Pointers, Accessed on 28 May

2012. http://www.drdobbs.com/184403837, 2002. V-B, V-C, V-E

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3126.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3126.pdf
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=28180606
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=28180606
http://www.drdobbs.com/184403837

	Introduction
	Smart Pointer Foundations
	Ownership Management
	Deep Copy alexandrescu01smart
	Copy on Write alexandrescu01smart
	Reference Counting alexandrescu01smart
	Reference Linking alexandrescu01smart
	Destructive Copy alexandrescu01smart

	Standard Conversions
	Common Implementations and Standard
	auto_ptr and unique_ptr (in std::)
	shared_ptr (in std::)
	weak_ptr (in std::)
	shared_array
	scoped_ptr and scoped_array
	intrusive_ptr

	Problems (Implicit Conversion et al.)
	OAUTH Accessors
	Ongoing Research and other Languages
	Objective C [Chapter 17]kochan09objc

	Summary and Outlook
	References

